I2 and I+ equivalents are electrophilic reagents normally used to add to unsaturated C-C bonds, take part in electrophilic substitution reactions with aromatics/heteroaromatics, or react with acidic C-H bonds. The attacking species is often written as I2 or I+, but may be more complex than these simple species.
I2 is the weakest electrophile of the molecular halogens, but will react directly with electron-rich double bonds. It is often activated by strong acids, Lewis acids, and oxidants. Oxidants can boost the iodination power of the reagent and can also generate I2 / I+ in situ from HI or simple iodide salts. Oxidants can also reoxidize any I- produced and maximize the use of iodine. Electrophilic iodination in the presence of chlorine reagents/chloride can occasionally result in chlorinated materials as by-products. Common oxidants and acid activators are listed below.
Common (re)oxidants for iodination: H2O2 or urea H2O2 complex AgNO3/Ag2SO4 NaBrO3 Ammonium peroxodisulfate (NH4)2S2O8 Tetrabutylammonium peroxydisulfate (nBu4N)2S2O8 Oxone KHSO5 0.5KHSO4 0.5K2SO4 Chloramine T Selectfluor F−TEDA−BF4 NaOCl KIO3/NaIO4
Common acid activators for iodination: H2SO4 p-Tosic acid CF3SO3H MeSO3H CF3CO2H
Other electrophilic iodination reagents are N-I reagents like NIS and DIDMH (1,3-diiodo-5,5-dimethylhydantoin). N-iodosuccinimide (NIS) is an expensive reagent and is often replaced by N-chlorosuccinimide (NCS), plus an iodine source. Other common reagents are ICl and related complexes, and anionic ICl2- reagents.
Less reactive (electrophilic) substrates may need conversion to anions prior to reaction with I+ reagent. The choice of which I+ reagent to use comes down to screening for yield and required selectivity, avoiding polyiodination and unwanted oxidation side reactions.
Shen, H.; Vollhart, P. C. Remarkable Switch in the Regiochemistry of the Iodination of Anilines by N-Iodosuccinimide: Synthesis of 1,2-Dichloro-3,4-diiodobenzene. Synlett. 2012, 2, 208-214.
Bovonsombat, P.; Leykajarakul, J.; Khan, C.; Pla-on, K.; Krause, M. M.; Khanthapura, P.; Ali, R.; Doowa, N. Regioselectiveiodination of phenol and analogues using N-iodosuccinimide and p-toluenesulfonicacid. Tetrahedron Lett. 2009, 50, 2664-2667.
Olah, G. A.; Wang, Q.; Sandford, G.; Parkash, G. K. S. Synthetic methods and reactions. 181. Iodination of deactivated aromatics with N-iodosuccinimide in trifluoromethanesulfonic acid (NIS-CF3SO3H) via in situ generated superelectrophilic iodine(I) trifluoromethanesulfonate. J. Org. Chem. 1993, 58(11), 3194-3195.
Suryankiran, N.; Reddy, T. S.; Suresh, V.; Lakshman, M.; Venkateswarlu, Y. Synthesis of α-iodoβ-ketosulfones and α-iodomethylsulfones using iodine monochloride. Tetrahedron Lett. 2006, 47(26), 4319-4323.
Kim, M. M.; Ruck, R. T.; Zhao, D.; Huffman, M. A. Green iodination of pyrazoles with iodine/hydrogen peroxide in water. Tetrahedron Lett. 2008, 49(25), 4026-4028.
Kraszkiewicz, L.; Sosnowski, M.; Skulski, L. Oxidative Iodination of Deactivated Arenes in Concentrated Sulfuric Acid with I2/NaIO4 and KI/NaIO4 Iodinating Systems. Synlett. 2006, 7, 1195-1199.
Castanet, A.; Colobert, F.; Broutin, P. Mild and regioselective iodination of electron-rich aromatics with N-iodosuccinimideand catalytic trifluoroaceticacid. Tetrahedron Lett. 2002, 43(29), 5047-5048.
Mohanakrishnan, A. K.; Prakash, C.; Ramesh, N. A simple iodination protocol via in situ generated ICl using NaI/FeCl3. Tetrahedron. 2006, 62(14), 3242-3247.
Pavlinac, J.; Zupan, M.; Stavber, S. ‘Green’ Iodination of Dimethoxy- and Trimethoxy-Substituted Aromatic Compounds Using an Iodine-Hydrogen Peroxide Combination in Water. Synthesis. 2006, 15, 2603-2607.
Hajipour, A. R.; Arbabian, M.; Ruoho, A. E. TetramethylammoniumDichloroiodate: An Efficient and Environmentally Friendly Iodination Reagent for Aromatic Compounds under Mild and Solvent-Free Conditions. J. Org. Chem. 2002, 67(24), 8622-8624.
Khansole, S. V.; Junne, S. B.; Sayyed, M. A.; Vubhute, Y. B. Convenient and Efficient Method for the Iodination of Aromatic Amines by PyridiniumIodochloride. Synthetic Communications. 2008, 38(11), 1792 - 1798.
D’Auria, M.; Mauriello, G. Reevaluationof BenzyltrimethylammoniumDichloroiodide, Previously Reported to be a Selective Iodinating Agent. Synthesis. 1995, No. 3, 248-250.
Tilve, R. D.; Kanetkar, V. R. RegioselectiveIodination of Activated Arenes Using Phenyl TrimethylammoniumDichloroiodate in Ionic Liquid Under Microwave Irradiation. Synthetic Communications. 2005, 35(10), 1313-1318.
Garden, S. J.; Torres, J. C.; De Souza Melo, S. C.; Lima, A. S.; Pinto, A. C.; Lima, E. L. S. Aromatic iodination in aqueous solution. A new lease of life for aqueous potassium dichloroiodate. Tetrahedron Lett. 2001, 42(11), 2089-2092.
Kosynkin, D. V.; Tour, J. M. BenzyltriethylammoniumDichloroiodate/Sodium Bicarbonate Combination as an Inexpensive, Environmentally Friendly, and Mild Iodinating Reagent for Anilines. Org. Lett. 2001, 3(7), 991-992.
“For BenzyltriethylammoniumDichloroiodate iodination of a substituted phenol”: Shotwell, J. B.; Krygowski, E. S.; Hines, J.; Koh, B.; Huntsman, E. W. D.; Choi, H. W.; Schneekloth, J. S., Jr.; Wood, J. L.; Crews, C. M. Total Synthesis of Luminacin D. Org. Lett. 2002, 4(18), 3087-3089.
Reddy, K. S. K.; Narender, N.; Rohitha, C. N.; Kulkarni, S. J. Iodination of Aromatic Compounds Using Potassium Iodide and Hydrogen Peroxide. Synthetic Communications. 2008, 38(22), 3894-3902.
Ganguly, N. C.; Barik, S. K.; Dutta, S. EcofriendlyIodination of Activated Aromatics and Coumarins Using Potassium Iodide and Ammonium Peroxodisulfate. Synthesis. 2010, No. 9, 1467-1472.
Filimonov, V. D.; Semenischeva, N. I.; Krasnokutskaya, E. A.; Hwang, H. Y.; Chi, K. TetraalkylammoniumDichloroiodates as Iodinating Agents: Absence of Activity in Solid Phases and Superelectrophilic Activity in Sulfuric Acid. Synthesis. 2008, 3, 401-404.
Da Ribeiro, R.S.; Esteves, P.M.; de Mattos, M.C.S. SuperelectrophilicIodination of Deactivated Arenes with TriiodoisocyanuricAcid. Synthesis. 2011, No. 5, 739-744.
Barluenga, J.; Marco-Arias, M.; González-Bobes, F.; Ballesteros, A.; González, J. M. New reactions in water: metal-free conversion of alcohols and ketones into α-iodoketones with NaI H2O2 H+. Chem. Commun. 2004, 2616-2617.
Gallo, R. D. C.; Ferreira, I. M.; Casagrande, G. A.; Pizzuti, L.; Oliveira-Silva, D.; Raminelli, C. Efficient and eco-friendly synthesis of iodinated aromatic building blocks promoted by iodine and hydrogen peroxide in water: a mechanistic investigation by mass spectrometry. Tetrahedron Lett. 2012, 53(40), 5372-5375.
Pavlinac, J.; Zupan, M.; Stavber, S. Effect of Water on the Functionalization of Substituted Anisoles with Iodine in the Presence of F−TEDA−BF4 or Hydrogen Peroxide. J. Org. Chem. 2006, 71(3), 1027-1032.
Edgar, K. J.; Falling, S. N. An efficient and selective method for the preparation of iodophenols. J. Org. Chem. 1990, 55(18), 5287-5291.
Adimurthy, S.; Ramachandraiah, G.; Ghosh, P. K.; Bedekar, A. V. A new, environment friendly protocol for iodination of electron-rich aromatic compounds. Tetrahedron Lett. 2003, 44, 5099-5101.
Iskra, J.; Stavber, S.; Zupan, M. Nonmetal-CatalyzedIodination of Arenes with Iodide and Hydrogen Peroxide. Synthesis. 2004 , No. 11, 1869-1873.
Krasovskiy, A.; Krasovskaya, V.; Knochel, P. Mixed Mg/Li Amides of the Type R2NMgCl⋅LiCl as Highly Efficient Bases for the Regioselective Generation of Functionalized Aryl and Heteroaryl Magnesium Compounds. Angewandte Chemie International Edition. 2006, 45(18), 2958-2961.
Kometani, T.; Watt, D. S.; Ji, T. Iodination of phenols using chloramine T and sodium iodide. Tetrahedron Lett. 1985, 26(17), 2043-2046.
Narender, N.; Srinivasu, P.; Kulkarni, S. J. RegioselectiveOxyiodination Of Aromatic Compounds Using Potassium Iodide And Oxone®. Synthetic Communications. 2002, 32, 2319-2324.
Kalyani, D.; Dick, A. R.; Anani, W. Q.; Sanford, M. S. A Simple Catalytic Method for the Regioselective Halogenation of Arenes. Org. Lett. 2006, 8(12), 2523-2526.
“For Heteroaryl iodides from lithiatedheterocycles”: Estel, L.; Marsais, F.; Queguinar, G. Metalation/SRN1 coupling in heterocyclic synthesis. A convenient methodology for ring functionalization. J. Org. Chem. 1988, 53(12), 2740-2744.
Lulinski, P.; Kryska, A.; Sosnowski, M.; Skulski, L. Eco-friendly Oxidative Iodination of Various Arenes with a Urea-Hydrogen Peroxide Adduct (UHP) as the Oxidant.Synthesis. 2004, 3, 441-445.
Yang, S. G.; Kim, Y. H. A practical iodination of aromatic compounds using tetrabutylammoniumperoxydisulfate and iodine. Teterhedron Lett. 1999, 40(33), 6051-6054.
Whang, J. P.; Yang, S. G.; Kim, Y. H. Novel α-iodination of functionalized ketones with iodine mediated by bis(tetra-n-butylammonium) peroxydisulfate. Chem. Commun. 1997, 1355-1356.
Yusubov, M. S.; Tveryakova, E. N.; Krasnokutskaya, E. A.; Perederyna, I. A.; Zhdankin, V. V. Solvent‐Free Iodination of Arenes using Iodine-Silver Nitrate Combination. Synthetic Communications. 2007, 37(8), 1259-1265.
Castanet, A.; Colobert, F.; Broutin, P. Mild and regioselective iodination of electron-rich aromatics with N-iodosuccinimide and catalytic trifluoroaceticacid. Tetrahedron Lett. 2002, 43(29), 5047-5048.
Leboeuf, D.; Ciesielski, J.; Frontier, A. J. Gold(I)-Catalyzed Iodination of Arenes. Synlett. 2014, 25(3), 399-402.
Jakab, G.; Hosseini, A.; Hausmann, H.; Schreiner, P. R. Mild and Selective Organocatalytic Iodination of Activated Aromatic Compounds. Synthesis. 2013, 45(12), 1635-1640.
Thiebes, C.; Prakash, G. K. S.; Petasis, N. A.; Olah, G. A. Mild Preparation of Haloarenes by Ipso-Substitution of Arylboronic Acids with N-Halosuccinimides. Synlett. 1998, 2, 141-142.
Du, B.; Jiang, X.; Sun, P. Palladium-CatalyzedHighly Selective ortho-Halogenation (I, Br, Cl) of Arylnitrilesvia sp2 C-H Bond Activation Using Cyano as Directing Group. J. Org. Chem. 2013, 78(6), 2786-2791.
Org. Process Res. Dev. 2011, 15, 449-454. Experimental 100 g scale
Org. Process Res. Dev. 2007, 11, 237-240. Experimental 100 g scale
Org. Process Res. Dev. 2001, 5, 80-83. Experimental 2.2 kg scale
Org. Process Res. Dev. 2001, 5, 80-83. Experimental 50 g scale
Org. Process Res. Dev. 2012, 16, 561−566. Experimental 400 g scale
Org. Process Res. Dev. 2014, 18, 528−538. Experimental 27 kg scale
Org. Process Res. Dev. 2012, 16, 1953−1966. Experimental 68 kg scale
Org. Process Res. Dev. 2010, 14, 1248-1253. Experimental 80 g scale
Org. Process Res. Dev. 2013, 17, 940−945. Experimental 80 g scale
Org. Process Res. Dev. 2004, 8, 353-359. Experimental 50 g scale
Org. Process Res. Dev. 2013, 17, 138−144. Experimental 120 g scale
Org. Process Res. Dev. 2003, 7, 663-675. Experimental 120 kg scale
Org. Process Res. Dev. 2012, 16, 1329−1337. Experimental 7 kg scale
Org. Process Res. Dev. 2011, 15, 1149-1162. Experimental 125g scale
Link nội dung: https://sgk.edu.vn/i2-ra-s-a69831.html